Nakayama Twisted Centers and Dual Bases of Frobenius Cellular Algebras
نویسندگان
چکیده
منابع مشابه
Nakayama automorphisms of Frobenius algebras
We show that the Nakayama automorphism of a Frobenius algebra R over a field k is independent of the field (Theorem 4). Consequently, the k-dual functor on left R-modules and the bimodule isomorphism type of the k-dual of R, and hence the question of whether R is a symmetric k-algebra, are independent of k. We give a purely ring-theoretic condition that is necessary and sufficient for a finite-...
متن کاملTwisted Exponents and Twisted Frobenius–schur Indicators for Hopf Algebras
Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhäuser and Zhu later observed that there is a strong connection between exponents and Frobenius– Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a si...
متن کاملTwisted Frobenius–schur Indicators for Hopf Algebras
The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...
متن کاملAuslander Algebras of Self-Injective Nakayama Algebras
For the Auslander algebras E of self-injective Nakayama algebras, the Δ-filtrations of the submodules of indecomposable projective Emodules are determined, a class of Δ-filtered E-modules without selfextensions are constructed, and the Ringel dual of E is described. Mathematics Subject Classifications: 16G10
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2015
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2014.952736